Euler in Babylon

A Scoop of Blancmange

January 02, 2009

The blancmange curve is the set of points $(x, y)$ such that $0 \le x \le 1$ and $y = \sum \limits_{n = 0}^{\infty} {\dfrac{s(2^n x)}{2^n}}$, where $s(x)$ is the distance from $x$ to the nearest integer.

The area under the blancmange curve is equal to ½, shown in pink in the diagram below.

blancmange curve

Let C be the circle with centre $\left ( \frac{1}{4}, \frac{1}{2} \right )$ and radius $\frac{1}{4}$, shown in black in the diagram.

What area under the blancmange curve is enclosed by C?Give your answer rounded to eight decimal places in the form 0.abcdefgh


gamwe6

Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter