Bidirectional Recurrence
March 01, 2015
Let:
$\begin{array}{ll} x(0)&=0 \\ x(1)&=1 \\ x(2k)&=(3x(k)+2x(\lfloor \frac k 2 \rfloor)) \text{ mod } 2^{60} \text{ for } k \ge 1 \text {, where } \lfloor \text { } \rfloor \text { is the floor function} \\ x(2k+1)&=(2x(k)+3x(\lfloor \frac k 2 \rfloor)) \text{ mod } 2^{60} \text{ for } k \ge 1 \\ y_n(k)&=\left\{{\begin{array}{lc} x(k) && \text{if } k \ge n \\ 2^{60} - 1 - max(y_n(2k),y_n(2k+1)) && \text{if } k < n \end{array}} \right. \\ A(n)&=y_n(1) \end{array}$
You are given:
$\begin{array}{ll} x(2)&=3 \\ x(3)&=2 \\ x(4)&=11 \\ y_4(4)&=11 \\ y_4(3)&=2^{60}-9\\ y_4(2)&=2^{60}-12 \\ y_4(1)&=A(4)=8 \\ A(10)&=2^{60}-34\\ A(10^3)&=101881 \end{array}$
Find $A(10^{12})$.Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter