Constrained Sums
October 03, 2015
Let S(n,k,b) represent the number of valid solutions to x1 + x2 + ... + xk ≤ n, where 0 ≤ xm ≤ bm for all 1 ≤ m ≤ k.
For example, S(14,3,2) = 135, S(200,5,3) = 12949440, and S(1000,10,5) mod 1 000 000 007 = 624839075.
Find (∑10 ≤ k ≤ 15 S(10k,k,k)) mod 1 000 000 007.
Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter