Divisibility comparison between factorials
May 05, 2012
Let f5(n) be the largest integer x for which 5x divides n. For example, f5(625000) = 7.
Let T5(n) be the number of integers i which satisfy f5((2·i-1)!) < 2·f5(i!) and 1 ≤ i ≤ n. It can be verified that T5(103) = 68 and T5(109) = 2408210.
Find T5(1018).
Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter