Euler in Babylon

Hexagonal tile differences

September 29, 2006

A hexagonal tile with number 1 is surrounded by a ring of six hexagonal tiles, starting at "12 o'clock" and numbering the tiles 2 to 7 in an anti-clockwise direction.

New rings are added in the same fashion, with the next rings being numbered 8 to 19, 20 to 37, 38 to 61, and so on. The diagram below shows the first three rings.

By finding the difference between tile n and each of its six neighbours we shall define PD(n) to be the number of those differences which are prime.

For example, working clockwise around tile 8 the differences are 12, 29, 11, 6, 1, and 13. So PD(8) = 3.

In the same way, the differences around tile 17 are 1, 17, 16, 1, 11, and 10, hence PD(17) = 2.

It can be shown that the maximum value of PD(n) is 3.

If all of the tiles for which PD(n) = 3 are listed in ascending order to form a sequence, the 10th tile would be 271.

Find the 2000th tile in this sequence.


gamwe6

Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter