Euler in Babylon

Perfection Quotients

April 18, 2009

For a positive integer n, let σ(n) be the sum of all divisors of n, so e.g. σ(6) = 1 + 2 + 3 + 6 = 12.

A perfect number, as you probably know, is a number with σ(n) = 2n.

Let us define the perfection quotient of a positive integer asp(n)
σ(n)n
.

Find the sum of all positive integers n ≤ 1018 for which p(n) has the form k + 12, where k is an integer.


gamwe6

Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter