Primes with runs
December 16, 2005
Considering 4-digit primes containing repeated digits it is clear that they cannot all be the same: 1111 is divisible by 11, 2222 is divisible by 22, and so on. But there are nine 4-digit primes containing three ones:
1117, 1151, 1171, 1181, 1511, 1811, 2111, 4111, 8111
We shall say that M(n, d) represents the maximum number of repeated digits for an n-digit prime where d is the repeated digit, N(n, d) represents the number of such primes, and S(n, d) represents the sum of these primes.
So M(4, 1) = 3 is the maximum number of repeated digits for a 4-digit prime where one is the repeated digit, there are N(4, 1) = 9 such primes, and the sum of these primes is S(4, 1) = 22275. It turns out that for d = 0, it is only possible to have M(4, 0) = 2 repeated digits, but there are N(4, 0) = 13 such cases.
In the same way we obtain the following results for 4-digit primes.
Digit, d | M(4, d) | N(4, d) | S(4, d) |
0 | 2 | 13 | 67061 |
1 | 3 | 9 | 22275 |
2 | 3 | 1 | 2221 |
3 | 3 | 12 | 46214 |
4 | 3 | 2 | 8888 |
5 | 3 | 1 | 5557 |
6 | 3 | 1 | 6661 |
7 | 3 | 9 | 57863 |
8 | 3 | 1 | 8887 |
9 | 3 | 7 | 48073 |
For d = 0 to 9, the sum of all S(4, d) is 273700.
Find the sum of all S(10, d).
Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter