Euler in Babylon

Smooth divisors of binomial coefficients

April 19, 2014

An integer is called B-smooth if none of its prime factors is greater than B.

Let SB(n) be the largest B-smooth divisor of n. Examples: S1(10) = 1 S4(2100) = 12 S17(2496144) = 5712

Define F(n) = ∑1≤Bn0≤rn SB(C(n,r)). Here, C(n,r) denotes the binomial coefficient. Examples: F(11) = 3132 F(1 111) mod 1 000 000 993 = 706036312 F(111 111) mod 1 000 000 993 = 22156169

Find F(11 111 111) mod 1 000 000 993.


gamwe6

Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter