Special subset sums: meta-testing
October 07, 2005
Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true:
- S(B) ≠ S(C); that is, sums of subsets cannot be equal.
- If B contains more elements than C then S(B) > S(C).
For this problem we shall assume that a given set contains n strictly increasing elements and it already satisfies the second rule.
Surprisingly, out of the 25 possible subset pairs that can be obtained from a set for which n = 4, only 1 of these pairs need to be tested for equality (first rule). Similarly, when n = 7, only 70 out of the 966 subset pairs need to be tested.
For n = 12, how many of the 261625 subset pairs that can be obtained need to be tested for equality?
NOTE: This problem is related to Problem 103 and Problem 105.
Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter