Steady Squares
March 27, 2010
The 3-digit number 376 in the decimal numbering system is an example of numbers with the special property that its square ends with the same digits: 3762 = 141376. Let's call a number with this property a steady square.
Steady squares can also be observed in other numbering systems. In the base 14 numbering system, the 3-digit number c37 is also a steady square: c372 = aa0c37, and the sum of its digits is c+3+7=18 in the same numbering system. The letters a, b, c and d are used for the 10, 11, 12 and 13 digits respectively, in a manner similar to the hexadecimal numbering system.
For 1 ≤ n ≤ 9, the sum of the digits of all the n-digit steady squares in the base 14 numbering system is 2d8 (582 decimal). Steady squares with leading 0's are not allowed.
Find the sum of the digits of all the n-digit steady squares in the base 14 numbering system for 1 ≤ n ≤ 10000 (decimal) and give your answer in the base 14 system using lower case letters where necessary.
Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter