Euler in Babylon

Writing 1/2 as a sum of inverse squares

April 27, 2007

There are several ways to write the number 1/2 as a sum of inverse squares using distinct integers.

For instance, the numbers {2,3,4,5,7,12,15,20,28,35} can be used:

$$\begin{align}\dfrac{1}{2} &= \dfrac{1}{2^2} + \dfrac{1}{3^2} + \dfrac{1}{4^2} + \dfrac{1}{5^2} +\\ &\quad \dfrac{1}{7^2} + \dfrac{1}{12^2} + \dfrac{1}{15^2} + \dfrac{1}{20^2} +\\ &\quad \dfrac{1}{28^2} + \dfrac{1}{35^2}\end{align}$$

In fact, only using integers between 2 and 45 inclusive, there are exactly three ways to do it, the remaining two being: {2,3,4,6,7,9,10,20,28,35,36,45} and {2,3,4,6,7,9,12,15,28,30,35,36,45}.

How many ways are there to write the number 1/2 as a sum of inverse squares using distinct integers between 2 and 80 inclusive?


gamwe6

Written by gamwe6 who lives and works in San Francisco building useful things. You should follow him on Twitter